Carnegie Learning Integrated Math I

Student Edition Volume 2

Carnegie Learning

437 Grant St．，Suite 918

Pittsburgh，PA 15219
Phone 412．690．2442
Customer Service Phone 877．401．2527
Fax 412．690．2444
www．carnegielearning．com

Chapter 1 © istockphoto．com／Gorfer；
Chapter 2 © istockphoto．com／Dane Wirtzfeld；
Chapter 3 © istockphoto．com／gaffera；
Chapter 4 © istockphoto．com／cosmin4000；
Chapter 5 © istockphoto．com／adisa；
Chapter 6 © istockphoto．com／Kris Hanke；
Chapter 7 © istockphoto．com／moutainberryphoto；
Chapter 8 © istockphoto．com／melhi；
Chapter 9 © istockphoto．com／Joselito Briones
Chapter 10 © istockphoto．com／pafe；
Chapter 11 © istockphoto．com／Aydin Mutlu；
Chapter 12 © istockphoto．com／karinclaus；
Chapter 13 © istockphoto．com／Ingenui
Chapter 14 © istockphoto．com／TommL
Chapter 15 © istockphoto．com／AlexMax
Chapter 16 © istockphoto．com／stuartbur

Copyright © 2012 by Carnegie Learning，Inc．All rights reserved．Carnegie Learning，Cognitive Tutor，SchoolCare，and Learning by Doing are all registered marks of Carnegie Learning，Inc． All other company and product names mentioned are used for identification purposes only and may be trademarks of their respective owners．Permission is granted for photocopying rights within licensed sites only．Any other usage or reproduction in any form is prohibited without the expressed consent of the publisher．

978－1－60972－157－2

Student Edition，Volume 2
Printed in the United States of America
1－05／2012 HPS

Dear Student,
You are about to begin an exciting endeavor using mathematics! to be successful, you will need the right tools. This book is one of the most important tools you will use this year. Throughout this book there is space for note-taking, sketching, and calculating. You will be given opportunities to think and reason about various mathematical concepts and use tools such as tables, graphs, and graphing calculators.

This year you will face many new challenges both in and outside of the classroom. While some challenges may seem difficult, it is important to remember that effort matters. You must realize that it may take hard work and perseverance to succeed - and your hard work will pay off!

Connections in mathematics are important. Throughout this text, you will build new knowledge based upon your prior knowledge. It is our goal that you see mathematics as relevant because it provides a common and useful language for discussing and solving real-world problems.

Don't worry-you will not be working alone. Working with others is a skill that you will need throughout your life. When you begin your career, you will most likely work with all sorts of people, from shy to outgoing, from leaders to supporters, from innovators to problem solvers-and many more types of people! Throughout this book, you will have many opportunities to work with your classmates. You will be able to discuss your ideas and predictions to different problem situations; present your calculations and solutions to questions; and analyze, critique and suggest, or support your classmates' answers to problem situations.

Today's workplace demands teamwork and self-confidence. At Carnegie Learning, our goal is to provide you with opportunities to be successful in your math course. Enjoy the year and have fun Learning by Doing ${ }^{(t) M)}$!

Acknowledgments

Carnegie Learning Authoring Team

Contributing Authors

- Jaclyn Snyder
- David Dengler
- Sandy Bartle

Senior Academic Officer

- Joshua Fisher Math Editor
- David "Augie" Rivera Math Editor

Director, Curriculum Development

- Jen Dilla

Editorial Assistant

- Lezlee Ross

Curriculum Developer

\author{

- Dr. Mary Lou Metz
}

Vendors

- Cenveo Publisher Services
- Mathematical Expressions
- Hess Print Solutions
- Bradford \& Bigelow
- Mind Over Media
- Lapiz
- elnstruction

Special Thanks

- Carnegie Learning Managers of School Partnerships for their review of design and content.
- Teacher reviewers and students for their input and review of lesson content.
- Carnegie Learning Software Development Team for their contributions to research and content.
- William S. Hadley for being a mentor to the development team, his leadership, and his pedagogical pioneering in mathematics education.
- Amy Jones Lewis for her review of content.

Table of Contents

8

Analyzing Data Sets for One Variable 453
8.1 Start Your Day the Right Way Graphically Representing Data 455
8.2 Which Measure Is Better?
Determining the Best Measure of Center for a Data Set 469
8.3 You Are Too Far Away!
Calculating IQR and Identifying Outliers 479
8.4 Whose Scores Are Better?
Calculating and Interpreting Standard Deviation 489
8.5 Putting the Pieces Together
Analyzing and Interpreting Data 505
Chapter 8 Summary 513
Correlation and Residuals 521
9.1 Like a Glove
Least Squares Regression 523
9.2 Gotta Keep It Correlatin'
Correlation 533
9.3 The Residual Effect Creating Residual Plots. 541
9.4 To Fit or Not To Fit? That Is The Question! Using Residual Plots. 553
9.5 Who Are You? Who? Who?
Causation vs. Correlation 563
Chapter 9 Summary 569

Analyzing Data Sets for Two Categorical Variables

10.1 Could You Participate in Our Survey? Interpreting Frequency Distributions.579
10.2 It's So Hot Outside!
Relative Frequency Distribution 589
10.3 She Blinded Me with Science! Relative Frequency Conditional Distribution 595
10.4 Oh! Switch the Station!
Drawing Conclusions from Data 601
Chapter 10 Summary 609
Mathematical Modeling615
11.1 Let's Take a Little Trip
Every Graph Tells a Story 617
11.2 Whodunit? The Function Family Line-Up Modeling Data with Curves of Best Fit 625
11.3 People, Tea, and Carbon Dioxide Modeling Using Exponential Functions 631
11.4 BAC Is BAD News
Choosing the Best Function to Model Data 639
Chapter 11 Summary 645
12.1 Let's Move!
Translating and Constructing Line Segments 651
12.2 Treasure Hunt Midpoints and Bisectors 667
12.3 It's All About Angles
Translating and Constructing Angles and Angle Bisectors 681
12.4 Did You Find a Parking Space?
Parallel and Perpendicular Lines on the Coordinate Plane. 689
12.5 Making Copies—Just as Perfect as the Original! Constructing Perpendicular Lines, Parallel Lines, and Polygons 699
Chapter 12 Summary 709
Congruence Through Transformations 719
13.1 Slide, Flip, Turn: The Latest Dance Craze?
Translating, Rotating, and Reflecting Geometric Figures 721
13.2 All the Same to You
Congruent Triangles 743
13.3 Side-Side-Side SSS Congruence Theorem 751
13.4 Side-Angle-Side
SAS Congruence Theorem 759
13.5 You Shouldn't Make Assumptions Angle-Side-Angle Congruence Theorem 769
13.6 Ahhhhh...We're Sorry We Didn't Include You! Angle-Angle-Side Congruence Theorem 775
Chapter 13 Summary 785
Perimeter and Area of Geometric Figures on the Coordinate Plane 793
14.1 Transforming to a New Level! Using Transformations to Determine Perimeter and Area 795
14.2 Looking at Something Familiar in a New Way Area and Perimeter of Triangles on the Coordinate Plane 805
14.3 One Figure, Many Names Area and Perimeter of Parallelograms on the Coordinate Plane 823
14.4 Let's Go Halfsies!
Determining the Perimeter and Area of Trapezoids and Composite Figures. 833
Chapter 14 Summary 843
15 Connecting Algebra and
Geometry with Polygons
15.1 Name That Triangle!Classifying Triangles on the Coordinate Plane855
15.2 Name That Quadrilateral!
Classifying Quadrilaterals on the Coordinate Plane 863
15.3 Is That Point on the Circle?
Determining Points on a Circle 871
15.4 Name That Point on the Circle
Circles and Points on the Coordinate Plane 879
Chapter 15 Summary 889

Logic

16.1 A Little Dash of Logic
Two Methods of Logical Reasoning 901
16.2 What's Your Conclusion?
Understanding Conditional Statements, Arguments, and Truth Tables 909
16.3 Proofs Aren't Just for Geometry Introduction to Direct and Indirect Proof with the Properties of Numbers 925
16.4 Your Oldest Likes Spinach?
Using Logic to Solve Problems, Part 1 931
16.5 Shoes and Math Scores?
Using Logic to Solve Problems, Part 2 939
Chapter 16 Summary 947

The Crew is here to help you throughout this text. Sometimes they will remind you about things you have already learned. Sometimes they will ask you questions to help you think about different strategies. Sometimes they will share fun facts. They are members of your group-someone you can rely on!

Teacher aides will guide you along your way. They will help you make connections and remind you to think about the details.

Mathematical Representations

Introduction

During this course, you will solve problems and work with many different representations of mathematical concepts, ideas, and processes to better understand the world. Each lesson will provide you with opportunities to discuss your ideas, work within groups, and share your solutions and methods with your class. These process icons are placed throughout the text.

Discuss to Understand

- Read the problem carefully.
- What is the context of the problem? Do we understand it?
- What is the question that we are being asked? Does it make sense?
- Is this problem similar to some other problem we know?

Think for Yourself

- Do I need any additional information to answer the question?
- Is this problem similar to some other problem that I know?
- How can I represent the problem using a picture, a diagram, symbols, or some other representation?

Work with Your Partner

- How did you do the problem?
- Show me your representation.
- This is the way I thought about the problem-how did you think about it?
- What else do we need to solve the problem?
- Does our reasoning and our answer make sense to each other?
- How will we explain our solution to the class?

Share with the Class

- Here is our solution and the methods we used.
- Are we communicating our strategies clearly?
- We could only get this far with our solution. How can we finish?
- Could we have used a different strategy to solve the problem?

Academic Glossary

Key Terms of the Course

There are important terms you will encounter throughout this book. It is important that you have an understanding of these words as you get started through the mathematical concepts. Knowing what is meant by these terms and using these terms will help you think, reason, and communicate your ideas. The Graphic Organizers shown display a definition for a key term, related words, sample questions, and examples.

Definition

To study or look closely for patterns.
Analyzing can involve examining or breaking a concept down into smaller parts to gain a better understanding of it.

Related Words

- examine
- investigate
- evaluate
- what do you notice?
- determine
- what do you think?
- observe
- sort and match
- consider
- identify

Ask Yourself

- Do I see any patterns?
- Have I seen something like this before?
- What happens if the shape, representation, or numbers change?
- What is the question asking me to accomplish?
- What is the context?
- What does the solution mean in terms of this problem situation?

Definition

To give details or describe how to determine an answer or solution. Explaining your reasoning helps justify conclusions.

Related Words

- show your work
- explain your calculation
- justify
- why or why not?

Ask Yourself

- How should I organize my thoughts?
- Is my explanation logical?
- Does my reasoning make sense?
- How can I justify my answer to others?
- Did I use complete sentences in my answer?

Example

A 747 airliner has an initial climb rate of 1800 feet per minute until it reaches a height of 10,000 feet.

1. Identify the independent and dependent quantities in this problem situation. Explain your reasoning.
The height of the airplane depends on the time, so height is the dependent quantity and time is the independent quantity

Describe the units of measure for:
a. the independent quantity (the input values) The independent quantity of time is measured in minutes.
b. the dependent quantity (the output values). The dependent quantity of height is measured in feet.
3. Which function family do you think best represents this situation? Explain your reasoning. Answers will vary.
The situation shows a linear function because the rate the plane ascends is constant. So, this situation belongs to the linear function family.

Definition

To display information in various ways. Representing mathematics can be done using words, tables, graphs, or symbols.

Related Words

- show
- plot
- sketch
- graph
- draw
- write an equation
- create
- complete the table

Ask Yourself

- How should I organize my thoughts?
- How do I use this model to show a concept or idea?
- What does this representation tell me?
- Is my representation accurate?
- What units or labels should I include?
- Are there other ways to model this concept?

3. Label the function on the coordinate plane.

4. Use the graph to determine how many minutes passed if the troop is below 3200 feet. Draw an oval on the graph to represent this part of the function and write the corresponding inequality statement.
More than 80 minutes has passed if the troop is below 3200 feet.
$m>80$
5. Write and solve an inequality to verify the solution set you interpreted from the graph. $-20 m+4800<3200$
$-20 m+4800-4800<3200-4800$
$-20 m<-1600$
$\frac{-20 m}{-20}<\frac{-1600 m}{-20 m}$
$m>80$

Definition

To represent or give an account of in words. Describing communicates mathematical ideas to others.

Related Words

- demonstrate
- label
- display
- compare
- define
- determine
- what is different?
- what is similar?
- what are the advantages?
- what are the disadvantages?

Ask Yourself

- How should I organize my thoughts?
- Is my explanation logical?
- Did I consider the context of the situation?
- Does my reasoning make sense?
- Did I use complete sentences in my answer?
- Did I include appropriate units and labels?
- Will my classmates understand my reasoning?

You just worked with different representations of a linear function.

1. Describe how a linear function is represented.
a. in a table.

When the input values in a table are in successive order and the first differences of the output values are constant, the table represents a linear function.
b. in a graph.

A linear function is represented in a graph by a straight line.
c. in an equation.

A linear function is represented by a function in the form $f(x)=a x+b$
2. Name some advantages and disadvantages of the graphing method and the algebraic method when determining solutions for linear functions.

Answers will vary.
Graphs provide visual representations of functions, and they can provide a wide range of values, depending on the intervals. A disadvantage is that I have to estimate values if points do not fall exactly on grid line intersections. The algebraic method provides an exact solution for every input, but I may be unable to solve more difficult equations correctly.

Problem Types You Will See

Worked Example

WHEN YOU SEE A WORKED EXAMPLE

- Take your time to read through it,
- Question your own understanding, and
- Think about the connections between steps.

ASK YOURSELF

- What is the main idea?
- How would this work if I changed the numbers?
- Have I used these strategies before?

3. Suppose a sequence has the same starting number as the sequence in the worked example, but its common ratio is 3 .
a. How would the pattern change?

The sequence would still increase, but the terms would be different.
The sequence would increase more rapidly.
b. Is the sequence still geometric? Explain your reasoning.

Yes. The sequence is still geometric because the ratio between any two consecutive terms is constant.
c. If possible, write the first 5 terms for the new sequence.
$1,3,9,27,81$

Thumbs Down

WHEN YOU SEE A THUMBS DOWN ICON

- Take your time to read through the incorrect solution.
- Think about what error was made.

ASK YOURSELF

- Where is the error?
- Why is it an error?
- How can I correct it?

5. Analyze the solution set of the system of linear inequalities shown.

$$
\left\{\begin{array}{l}
x+y>1 \\
-x+y \leq 3
\end{array}\right.
$$

a. Graph the system of linear inequalities.

c. Alan makes the statement shown.

Explain why Alan's statement is incorrect. Use the intersection point of this system to explain your reasoning.
$(-1,2)$

$$
\begin{array}{rlrl}
-1+2 & >1 & -(-1)+2 & \leq 3 \\
1 & >1 & 3 & \leq 3
\end{array}
$$

Alan is incorrect because the intersection point is not always a solution to the system of linear inequalities. The intersection point for this system only works for one of the inequalities, not both which means it is not a solution. If the inequality symbols are not both "or equal to" then the intersection point is not a solution.

Thumbs Up

WHEN YOU SEE A THUMBS UP ICON

- Take your time to read through the correct solution.
- Think about the connections between steps.

ASK YOURSELF

- Why is this method correct?
- Have I used this method before?

8. Pat and George each wrote a function to represent the number of rice grains for any square number using different methods.

Use properties of exponents to verify that 2^{s-1} and $\frac{1}{2}(2)^{s}$ are equivalent.

$$
\begin{aligned}
2^{s-1} & =\left(2^{s}\right)\left(2^{-1}\right) & \frac{1}{2}(2)^{s} & =(2)^{-1}(2)^{s} \\
& =\left(2^{s}\right)\left(\frac{1}{2}\right) & & =2^{-1+s} \\
& =\left(\frac{1}{2}\right)\left(2^{s}\right) & & =2^{s-1}
\end{aligned}
$$

Who's Correct?

WHEN YOU SEE A WHO'S CORRECT? ICON

- Take your time to read through the situation.
- Question the strategy or reason given.
- Determine which solution is correct and which is not correct.

ASK YOURSELF

- Does the reasoning make sense?
- If the reasoning makes sense, what is the justification?
- If the reasoning does not make sense, what error was made?

8. Carlos and Mikala do not like working with fractions. They rewrite their equation so that it does not have fractions. Their work is shown.

Carlos	Mikala
$F=\frac{9}{5} c+32$	$C=\frac{5}{9}(F-32)$
$(5) F=5\left(\frac{9}{5} c+32\right)$	$(9) C=(9) \frac{5}{9}(F-32)$
$5 F=9 C+160$	$9 C=5(F-32)$
$5 F-9 C=160$	$9 C=5 F-160$
$9 C-5 F=-160$	

Carlos and Mikala got two different equations. Who is correct?
Both Carlos and Mikala are correct. If they divide either equation by -1 they will get the other equation.

The Standards for Mathematical Practice

Effective communication and collaboration are essential skills of a successful learner. With practice, you can develop the habits of mind of a productive mathematical thinker.

Make sense of problems and persevere in solving them.

I can:

- explain what a problem "means" in my own words.
- analyze and organize information.
- keep track of my plan and change it if necessary
- always ask myself, "does this make sense?"

Attend to precision.

I can:

- calculate accurately and efficiently.
- use clear definitions when I talk with my classmates, my teacher, and others.
- specify units of measure and label diagrams and other figures appropriately to clarify the meaning of different representations.

Reasoning and Explaining

Reason abstractly and quantitatively.

I can:

- create an understandable representation of a problem situation.
- consider the units of measure involved in a problem.
- understand and use properties of operations.

Construct viable arguments

 and critique the reasoning of others.I can:

- use definitions and previously established results in constructing arguments.
- communicate and defend my own mathematical reasoning using examples, drawings, or diagrams.
- distinguish correct reasoning from reasoning that is flawed.
- listen to or read the conclusions of others and decide whether they make sense.
- ask useful questions in an attempt to understand other ideas and conclusions.

Modeling and Using Tools

Model with mathematics.
I can:

- identify important relationships in a problem situation and represent them using tools such as, diagrams, tables, graphs, and formulas.
- apply mathematics to solve problems that occur in everyday life.
- interpret mathematical results in the contexts of a variety of problem situations.
- reflect on whether my results make sense, improving the model I used if it is not appropriate for the situation.

Use appropriate tools strategically.

I can:

- use a variety of different tools that I have to solve problems.
- use a graphing calculator to explore mathematical concepts.
- recognize when a tool that I have to solve problems might be helpful and also when it has limitations.

Seeing Structure and Generalizing

Look for and make use of structure.

I can:

- look closely to see a pattern or a structure in a mathematical argument.
- can see complicated things as single objects or as being composed of several objects.
- can step back for an overview and can shift my perspective.

Look for and express regularity

 in repeated reasoning.I can:

- notice if calculations are repeated.
- look for general methods and more efficient methods to solve problems.
- evaluate the reasonableness of intermediate results.
- make generalizations based on results.

Each lesson provides opportunities for you to think, reason, and communicate mathematical understanding. Here are a few examples of how you will develop expertise using the Standards for Mathematical Practice throughout this text.

